Back in March I wrote: Somewhere around 2035 or so … the (free) energy used per [computer] gate operation will fall to the level thermodynamics says is required to [logically] erase a bit of information. After this point, the energy cost per computation can only fall by switching to “reversible” computing designs, that only rarely [logically] erase bits. … Computer gates … today … in effect irreversibly erase many bits per gate operation. To erase fewer bits instead, gates must be run “adiabatically,” i.e., slow enough so key parameters can change smoothly. In this case, the rate of bit erasure per operation is proportional to speed; run a gate twice as slow, and it erases only half as many bits per operation. Once reversible computing is the norm, gains in making more smaller faster gates will have to be split, some going to let gates run more slowly, and the rest going to more operations. (
A Future Of Pipes
A Future Of Pipes
Back in March I wrote: Somewhere around 2035 or so … the (free) energy used per [computer] gate operation will fall to the level thermodynamics says is required to [logically] erase a bit of information. After this point, the energy cost per computation can only fall by switching to “reversible” computing designs, that only rarely [logically] erase bits. … Computer gates … today … in effect irreversibly erase many bits per gate operation. To erase fewer bits instead, gates must be run “adiabatically,” i.e., slow enough so key parameters can change smoothly. In this case, the rate of bit erasure per operation is proportional to speed; run a gate twice as slow, and it erases only half as many bits per operation. Once reversible computing is the norm, gains in making more smaller faster gates will have to be split, some going to let gates run more slowly, and the rest going to more operations. (
Comments on this post are for paid subscribers