In some technology competitions, winners dominate strongly. For example, while gravel may cover a lot of roads if we count by surface area, if we weigh by vehicle miles traveled then asphalt strongly dominates as a road material. Also, while some buildings are cooled via fans and very thick walls, the vast majority of buildings in rich and hot places use air-conditioning. In addition, current versions of software systems also tend to dominate over old older versions. (E.g., Windows 10 over Windows 8.)
However, in many other technology competitions, older technologies remain widely used over long periods. Cities were invented ten thousand years ago, yet today only about half of the population lives in them. Cars, trains, boats, and planes have taken over much transportation, yet we still do plenty of walking. Steel has replaced wood in many structures, yet wood is still widely used. Fur, wool, and cotton aren’t used as often as they once were, but they are still quite common as clothing materials. E-books are now quite popular, but paper books sales are still growing.
Whether or not an old tech still retains wide areas of substantial use depends on the average advantage of the new tech, relative to the variation of that advantage across the environments where these techs are used, and the variation within each tech category. All else equal, the wider the range of environments, and the more diverse is each tech category, the longer that old tech should remain in wide use.
For example, compare the set of techs that start with the letter A (like asphalt) to the set that start with the letter G (like gravel). As these are relatively arbitrary sets that do not “cut nature at its joints”, there is wide diversity within each category, and each set is all applied to a wide range of environments. This makes it quite unlikely that one of these sets will strongly dominate the other.
Note that techs that tend to dominate strongly, like asphalt, air-conditioning, and new software versions, more often appear as a lumpy change, e.g., all at once, rather than via a slow accumulation of many changes. That is, they more often result from one or a few key innovations, and have some simple essential commonality. In contrast, techs that have more internal variety and structure tend more to result from the accumulation of more smaller innovations.
Now consider the competition between humans and computers for mental work. Today human brains earn more than half of world income, far more than the costs of computer hardware and software. But over time, artificial hardware and software have been improving, and slowly commanding larger fractions. Eventually this could become a majority. And a key question is then: how quickly might computers come to dominate overwhelmingly, doing virtually all mental work?
On the one hand, the ranges here are truly enormous. We are talking about all mental work, which covers a very wide of environments. And not only do humans vary widely in abilities and inclinations, but computer systems seem to encompass an even wider range of designs and approaches. And many of these are quite complex systems. These facts together suggest that the older tech of human brains could last quite a long time (relative of course to relevant timescales) after computers came to do the majority of tasks (weighted by income), and that the change over that period could be relatively gradual.
For an analogy, consider the space of all possible non-mental work. While machines have surely been displacing humans for a long time in this area, we still do many important tasks “by hand”, and overall change has been pretty steady for a long time period. This change looked nothing like a single “general” machine taking over all the non-mental tasks all at once.
On the other hand, human minds are today stuck in old bio hardware that isn’t improving much, while artificial computer hardware has long been improving rapidly. Both these states, of hardware being stuck and improving fast, have been relatively uniform within each category and across environments. As a result, this hardware advantage might plausibly overwhelm software variety to make humans quickly lose most everywhere.
However, eventually brain emulations (i.e. “ems”) should be possible, after which artificial software would no longer have a hardware advantage over brain software; they would both have access to the same hardware. (As ems are an all-or-nothing tech that quite closely substitutes for humans and yet can have a huge hardware advantage, ems should displace most all humans over a short period.) At that point, the broad variety of mental task environments, and of approaches to both artificial and em software, suggests that ems many well stay competitive on many job tasks, and that this status might last a long time, with change being gradual.
Note also that as ems should soon become much cheaper than humans, the introduction of ems should initially cause a big reversion, wherein ems take back many of the mental job tasks that humans had recently lost to computers.
In January I posted a theoretical account that adds to this expectation. It explains why we should expect brain software to be a marvel of integration and abstraction, relative to the stronger reliance on modularity that we see in artificial software, a reliance that allows those systems to be smaller and faster built, but also causes them to rot faster. This account suggests that for a long time it would take unrealistically large investments for artificial software to learn to be as good as brain software on the tasks where brains excel.
A contrary view often expressed is that at some point someone will “invent” AGI (= Artificial General Intelligence). Not that society will eventually have broadly capable and thus general systems as a result of the world economy slowly collecting many specific tools and abilities over a long time. But that instead a particular research team somewhere will discover one or a few key insights that allow that team to quickly create a system that can do most all mental tasks much better than all the other systems, both human and artificial, in the world at that moment. This insight might quickly spread to other teams, or it might be hoarded to give this team great relative power.
Yes, under this sort of scenario it becomes more plausible that artificial software will either quickly displace humans on most all jobs, or do the same to ems if they exist at the time. But it is this scenario that I have repeatedly argued is pretty crazy. (Not impossible, but crazy enough that only a small minority should assume or explore it.) While the lumpiness of innovation that we’ve seen so far in computer science has been modest and not out of line with most other research fields, this crazy view postulates an enormously lumpy innovation, far out of line with anything we’ve seen in a long while. We have no good reason to believe that such a thing is at all likely.
If we presume that no one team will ever invent AGI, it becomes far more plausible that there will still be plenty of jobs tasks for ems to do, whenever ems show up. Even if working ems only collect 10% of world income soon after ems appear, the scenario I laid out in my book Age of Em is still pretty relevant. That scenario is actually pretty robust to such variations. As a result of thinking about these considerations, I’m now much more confident that the Age of Em will happen.
In Age of Em, I said:
Conditional on my key assumptions, I expect at least 30 percent of future situations to be usefully informed by my analysis. Unconditionally, I expect at least 5 percent.
I now estimate an unconditional 80% chance of it being a useful guide, and so will happily take bets based on a 50-50 chance estimate. My claim is something like:
Within the first D econ doublings after ems are as cheap as the median human worker, there will be a period where >X% of world income is paid for em work. And during that period Age of Em will be a useful guide to that world.
Note that this analysis suggests that while the arrival of ems might cause a relatively sudden and disruptive transition, the improvement of other artificial software would likely be more gradual. While overall rates of growth and change should increase as a larger fraction of the means of production comes to be made in factories, the risk is low of a sudden AI advance relative to that overall rate of change. Those concerned about risks caused by AI changes can more reasonably wait until we see clearer signs of problems.
Why wouldn't an em worker care about these? With regards to socialabilities, these seem pretty essential in the workplace. Human workerstoday need to interact & manage relationships with colleagues,bosses, customers, partners, clients, employees, the general public,etc. Why wouldn't ems too?Bank clarks maintained social relationships, ATM's don't. For many engineering jobs, you want a mind that can take a technical specification containing performance, efficiency, weight ect, and design an component to those specs. It doesn't seem to me like the social relationships humans make actually helps with this.
Note that when we link together our existing software, we try to do so"at arm's length", through APIs allowing specific defined operations,rather than by allowing every part of each program to interact directlywith every part of the other program.Because if they interacted directly, they would be part of the same program. There is no reason that a single "program" couldn't contain multiple human brain emulations. (Or that an API couldn't contain neural signals)
But if you know which high level shortcuts to take, you must have at least a moderately good understanding of the principles the human mind works on. This rules out the pure brute copying scenario. And you can use that understanding in your AI designs.
If you can simulate an adult, you can probably simulate from embryo. Then you can put the embryo in a virtual world maximally conducive to learning what you want it to learn. How could a human with their normal, take time off to have fun upbringing, compete with an em that has been trained from birth, with at least a few neurobiological tweaks. (Connecting the pleasure and pain pathways up to the work, increase attention span ect.)