How is popularity being defined? By being closer to some neighbors more than average than others from subspace selection?

I could see that some hubs have particular, similar or different social behaviors than other hubs (or antihubs).

How important would being popular/unpopular be along those dimensions if most of those neighbors around a particular hub don't really drive the outcome of the overall system?

How can we begin to look at how the models will change?

Maybe if we could construct a vector for every person (org) with every entry representing all possible aspects that could describe such, and a matrix representing of the interactions between such groups, we could look at the decomposition of such a matrix (like a projecting such onto a low dimension complex space with the number of dimensions equal to that of the "social" vector) and then multiplying it by the vector, and doing something like cosine similarity under various transformations (like: values in the matrix that represent what the interactions look like at one period of time over another and even shuffling around the order at random before decomposition) could give us insight into how people/orgs will change together.

How is popularity being defined? By being closer to some neighbors more than average than others from subspace selection?

I could see that some hubs have particular, similar or different social behaviors than other hubs (or antihubs).

How important would being popular/unpopular be along those dimensions if most of those neighbors around a particular hub don't really drive the outcome of the overall system?

How can we begin to look at how the models will change?

Maybe if we could construct a vector for every person (org) with every entry representing all possible aspects that could describe such, and a matrix representing of the interactions between such groups, we could look at the decomposition of such a matrix (like a projecting such onto a low dimension complex space with the number of dimensions equal to that of the "social" vector) and then multiplying it by the vector, and doing something like cosine similarity under various transformations (like: values in the matrix that represent what the interactions look like at one period of time over another and even shuffling around the order at random before decomposition) could give us insight into how people/orgs will change together.

Robin,

Great post! I think you are certainly right that relationships get strange in high-dimensional societies.

This post from ribbonfarm.com explores a similar idea in a few directions that seem complementary: https://www.ribbonfarm.com/...

Thanks for sharing,Kevin