Tag Archives: Competition

Prediction Machines

One of my favorite books of the dotcom era was Information Rules, by Shapiro and Varian in 1998. At the time, tech boosters were saying that all the old business rules were obsolete, and anyone who disagreed “just doesn’t get it.” But Shapiro and Varian showed in detail how to understand the new internet economy in terms of standard economic concepts. They were mostly right, and Varian went on to become Google’s chief economist.

Today many tout a brave new AI-driven economic revolution, with some touting radical change. For example, a widely cited 2013 paper said:

47% of total US employment is in the high risk category … potentially automatable over … perhaps a decade or two.

Five years later, we haven’t yet seen changes remotely this big. And a new book is now a worthy successor to Information Rules:

In Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs.

As with Information Rules, these authors mostly focus on guessing the qualitative implications of such prediction machines. That is, they don’t say much about likely rates or magnitudes of change, but instead use basic economic analysis to guess likely directions of change. (Many example quotes below.) And I can heartily endorse almost all of these good solid guesses about change directions. A change in the cost of prediction is a fine way to frame recent tech advances, and if you want to figure out what they imply for your line of business, this is the book for you.

However, the book does at times go beyond estimating impact directions. It says “this time is different”, suggests “extraordinary changes over the next few years”, says an AI-induced recession might result from a burst of new tech, and the eventual impact of this tech will be similar to that of computers in general so far:

Everyone has had or will soon have an AI moment. We are accustomed to a media saturated with stories of new technologies that will change our lives. … Almost all of us are so used the the constant drumbeat of technology news that we numbly recite that the only thing immune to change is change itself. Until have our AI moment. Then we realize that this technology is different. p.2

In various ways, prediction machines can “use language, form abstractions and concepts, solve the kinds of problem now [as of 1955] reserve for humans, and improve themselves.” We do not speculate on whether this process heralds the arrival of general artificial intelligence, “the Singularity”, or Skynet. However, as you will see, this narrower focus on prediction still suggests extraordinary changes over the next few years. Just as cheap arithmetic enabled by computers proved powerful in using in dramatic change in business and personal lives, similar transformations will occur due to cheap prediction. p.39

Once an AI is better than humans at a particular task, job losses well happen quickly. We can be confident that new jobs will arise with a few ears and people will have something to do, but that will be little comfort for those looking for work and waiting for those new jobs to appear. An AI-induced recession is not out of the question. p.212

And they offer a motivating example that would require pretty advanced tech:

At some point, as it turns the knob, the AI’s prediction accuracy crosses a threshold, changing Amazon’s business model. The prediction becomes sufficiently accurate that it becomes more profitable for Amazon to ship you the goods that it predicts you will want rather than wait for you to order them. p.16

I can’t endorse any of these suggestions about magnitudes and rates of change. I estimate much smaller and slower change. But the book doesn’t argue for any of these claims, it more assumes them, and so I won’t bother to argue the topic here either. The book only mentions radical scenarios a few more times:

But is this time different? Hawking’s concern, shared by many, is that this time might be unusual because AI may squeeze out the last remaining advantages humans have over machines. How might an economist approach this question? … If you favor free trade between countries, then you … support developing AI, even if it replaces some jobs. Decades of research into the effect of trade show that other jobs will appear, and overall employment will not plummet. p.211

For years, economists have faced criticism that the agents on which we see our theories are hyper-rational and unrealistic models of human behavior. True enough, but when it comes to superintelligence, that means we have glen on the right track. … Thus economics provides a powerful way to understand how a society of superintelligent AIs will evolve. p.222

Yes, research is underway to make prediction machines work in broader settings, but the break-through that will give rise to general artificial intelligence remains undiscovered. Some believe that AGI is so far out that we should not spend cycles worrying about it. … As with many AI-related issues, the future is highly uncertain. Is this the end of the world as we know it? not yet, but it is the end of this book. Companies are deploying AIs right now. In applying the simple economics that underpin lower-cost prediction and higher-value complements to prediction, your business can make ROI-optimizing choices and strategic decision with regard to AI. When we move beyond prediction machines to general artificial intelligence or even superintelligence, whatever that may be, then we will be at a different AI moment. That is something everyone agrees upon. p.223

As you can see, they don’t see radical scenarios as coming soon, nor see much urgency regarding them. A stance I’m happy to endorse. And I also endorse all those insightful qualitative change estimates, as illustrated by these samples: Continue reading "Prediction Machines" »

GD Star Rating
loading...
Tagged as: , ,